Prüfungsteil B

  • Ein Autozulieferer hat zwei Betriebsstandorte A und B. Die Zahl der Beschäftigten am Standort A ist viermal so groß wie am Standort B. 60 % aller Beschäftigten des Autozulieferers haben sich für den Kauf eines Jobtickets entschieden, mit dem die Firma die Nutzung des öffentlichen Personennahverkehrs für den Weg zur Arbeit fördert.

    Bestimmen Sie unter der Annahme, dass der Anteil der Beschäftigten mit einem Jobticket an beiden Standorten gleich ist, die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Beschäftigter des Autozulieferers am Standort B arbeitet und kein Jobticket besitzt.

    (2 BE) 

  • Tatsächlich ist der Anteil der Beschäftigten mit einem Jobticket an beiden Standorten unterschiedlich; am Standort B besitzt nur die Hälfte der Beschäftigten ein Jobticket. Berechnen Sie die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Beschäftigter des Autozulieferers, der ein Jobticket besitzt, am Standort A arbeitet.

    (3 BE) 

  • Die Sektoren des abgebildeten Glücksrads sind gleich groß und mit den Zahlen von 0 bis 9 durchnummeriert.

    Das Glücksrad wird zwanzigmal gedreht. Bestimmen Sie die Wahrscheinlichkeit der Ereignisse \(A\) und \(B\).

    \(A\): „Es wird genau siebenmal eine ungerade Zahl erzielt."

    \(B\): „Es wird mehr als siebenmal und höchstens zwölfmal eine ungerade Zahl erzielt."

    Glücksrad Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2023

    (3 BE) 

  • Das Glücksrad wird zweimal gedreht. Untersuchen Sie, ob die Ereignisse \(C\) und \(D\) stochastisch unabhängig sind.

    \(C\): „Die Summe der erzielten Zahlen ist kleiner als 4."

    \(D\): „Das Produkt der erzielten Zahlen ist 2 oder 3."

    (5 BE) 

  • Mit dem Glücksrad wird ein Spiel durchgeführt. Jeder Spieler darf das Glücksrad beliebig oft drehen. Beendet er das Spiel selbst, bevor er eine „0" erzielt, so wird ihm die Summe der erzielten Zahlen in Euro ausgezahlt. Erzielt er eine „0", so ist das Spiel dadurch beendet und es erfolgt keine Auszahlung.

    Ein erster Spieler entscheidet sich vor dem Spiel dafür, das Glücksrad, sofern er keine „0" erzielt, viermal zu drehen und danach das Spiel zu beenden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass er eine Auszahlung erhält.

    (2 BE) 

  • Bei einem zweiten Spieler beträgt nach mehrmaligem Drehen des Glücksrads die Summe der erzielten Zahlen 60. Er möchte nun das Spiel entweder sofort beenden oder das Glücksrad genau ein weiteres Mal drehen. Berechnen Sie für den Fall, dass sich der Spieler für die weitere Drehung entscheiden sollte, den Erwartungswert für die Auszahlung. Geben Sie eine Empfehlung ab, ob sich der Spieler für das Beenden des Spiels oder für die weitere Drehung entscheiden sollte, und begründen Sie Ihre Empfehlung.

    (4 BE) 

  • Wenn sich ein Spieler vor dem Spiel dafür entscheidet, das Glücksrad, sofern er keine „0" erzielt, n-mal zu drehen, dann kann der Erwartungswert für die Auszahlung mit dem Term \(5n \cdot 0{,}9^n\) berechnet werden. Beurteilen Sie die folgende Aussage:

    Es gibt zwei, aber nicht drei aufeinanderfolgende Werte von \(n\), für die die Erwartungswerte für die Auszahlung übereinstimmen.

    (4 BE) 

  • Im Folgenden wird ein Glücksrad mit n gleich großen Sektoren, die mit den Zahlen 0 bis n - 1 durchnummeriert sind, betrachtet.

    Bestimmen Sie für n = 5 die Wahrscheinlichkeit dafür, dass bei dreimaligem Drehen des Glücksrads genau zwei gleiche Zahlen erzielt werden.

    (3 BE) 

  • Das Glücksrad wird n-mal gedreht. Ermitteln Sie den kleinstmöglichen Wert von n, für den die Wahrscheinlichkeit dafür, dass alle Zahlen verschieden sind, kleiner als 1 % ist.

    (4 BE) 

  • Gegeben sind die Punkte \(A(19|0|0)\), \(B(0|19|0)\), \(E(12|0|7)\) und \(F(0|12|7)\) (vgl. Abbildung 1). Das Viereck \(ABFE\) liegt in der Ebene \(L\).

    Weisen Sie nach, dass das Viereck \(ABFE\) ein Trapez mit zwei gleich langen Seiten ist.

    (3 BE) 

  • Der Körper wird so um die Gerade \(AB\) gedreht, dass der mit \(D\) bezeichnete Eckpunkt nach der Drehung in der \(x_1x_2\)-Ebene liegt und dabei eine positive \(x_2\)-Koordinate hat. Die folgenden Rechnungen liefern die Lösung einer Aufgabe im Zusammenhang mit der Drehung:

    \(\begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix} \circ \left[ \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \right] = 0 \; \Leftrightarrow \; \lambda = 0{,}8\), d. h. \(S(4{,}8|3{,}6|0)\)

    \(\overrightarrow{T} = \overrightarrow{S} + \vert \overrightarrow{CS} \vert \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\)

    Formulieren Sie eine passende Aufgabenstellung und geben Sie die Bedeutung von \(S\) an.

    (3 BE) 

  • Abbildung 1 zeigt den Körper \(ABCDEFGH\), bei dem die quadratische Grundfläche \(ABCD\) parallel zur quadratischen Deckfläche \(EFGH\) liegt. Der Körper ist symmetrisch sowohl bezüglich der \(x_1x_3\)-Ebene als auch bezüglich der \(x_2x_3\)-Ebene. Außerdem werden die Punkte \(S_k(0|0|k)\) mit \(k \in \; ]7;+\infty[\) betrachtet, die Spitzen von Pyramiden \(EFGHS_k\) sind.

    Abbildung 1 Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 1

    Bestimmen Sie rechnerisch denjenigen Wert von \(k\), für den die Pyramide \(EFGHS_k\) den Körper \(ABCDEFGH\) zu einer großen Pyramide \(ABCDS_k\) ergänzt.

    (zur Kontrolle: \(k = 19\))

    (2 BE) 

  • Zeichnen Sie die Pyramide \(EFGHS_{15}\) in Abbildung 1 ein. Die Seitenfläche \(EFS_{15}\) und die Grundfläche \(EFGH\) dieser Pyramide schließen einen Winkel ein. Begründen Sie ohne weitere Rechnung, dass die Größe dieses Winkels kleiner als 45° ist; verwenden Sie dazu folgende Information:

    Für den Mittelpunkt \(M\) des Quadrats \(EFGH\) und den Punkt \(N\) mit \( \overrightarrow{N} = \dfrac{1}{2} \cdot (\overrightarrow{E} + \overrightarrow{F})\) gilt  \(\overline{MS_{15}} < \overline{MN}\).

    (4 BE) 

  • Der Körper \(ABCDEFGHS_{15}\) stellt modellhaft die Knickpyramide des Pharaos Snofru dar, die ca. 2650 v. Chr. in Ägypten erbaut wurde (vgl. Abbildung 2). Dabei beschreibt die \(x_1x_2\)-Ebene den horizontalen Boden; eine Längeneinheit im Koordinatensystem entspricht 7 m in der Realität.

    Abbildung 2 Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2023

    Ursprünglich wurde mit dem Bau der Pyramide begonnen, die im Modell der Pyramide \(ABCDS_{19}\) entspricht. Aufgrund von Stabilitätsproblemen im Bauprozess musste die Neigung der Seitenflächen gegenüber dem Boden beim Erreichen einer bestimmten Höhe verändert werden. Der entstandene Knick ist namensgebend für die Pyramide.

    Bestimmen Sie die Höhenänderung des Bauwerks, die durch die Bauplanänderung hervorgerufen wurde, in Metern. Begründen Sie, dass im unteren Teil des Bauwerks der Neigungswinkel der Seitenflächen gegenüber dem Boden um mehr als 9° größer ist als im oberen Teil des Bauwerks.

    (3 BE) 

  • Zu einem bestimmten Zeitpunkt fallen auf die Knickpyramide Sonnenstrahlen, die im Modell durch parallele Geraden mit dem Richtungsvektor \(\overrightarrow{S_{15}E}\) dargestellt werden. Der Schatten der Spitze der Knickpyramide auf dem horizontalen Boden wird durch den Punkt \(T\) beschrieben. Die Lote durch die Punkte \(E\), \(F\), \(G\), \(H\) und \(S_{15}\) auf die \(x_1x_2\)-Ebene schneiden diese in den Punkten \(E'\), \(F'\), \(G'\), \(H'\) bzw. \(S'\). Diese sind zusammen mit der Grundfläche der Pyramide und dem Punkt \(T\) in Abbildung 3 dargestellt.

    Abbildung 3 Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 3

    Berechnen Sie die Koordinaten von \(T\).

    (3 BE) 

  • Der Schattenbereich der gesamten Pyramide auf dem Boden besteht im Modell aus zwei kongruenten Vierecken. Zeichnen Sie diesen Schattenbereich in Abbildung 3 ein und geben Sie die besondere Form der genannten Vierecke an.

    (4 BE) 

  • Die Abbildung zeigt den Körper \(ABCDEF\) mit \(A(6|3|0)\), \(B(0|6|0)\), \(C(3|0|0)\), \(D(6|3|6)\), \(E(0|6|6)\) und \(F(3|0|12)\).
    Die Punkte \(D\), \(E\) und \(F\) liegen in der Ebene \(L\).

    Abbildung Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2023

    Ermitteln Sie eine Gleichung von \(L\) in Koordinatenform.

    (zur Kontrolle: \(2x_1 + 4x_2 + 3x_3 - 42 = 0\))

    (4 BE) 

  • Bestimmen Sie die Größe des Winkels, den \(L\) mit der \(x_1x_2\)-Ebene einschließt.

    (3 BE) 

  • Auf der Kante \([AD]\) liegt der Punkt \(Q\), auf der Kante \([BE]\) der Punkt \(R(0|6|2)\). Das Dreieck \(FQR\) hat in \(Q\) einen rechten Winkel. Bestimmen Sie die \(x_3\)-Koordinate von \(Q\).

    (5 BE) 

  • Berechnen Sie das Volumen des Körpers \(ABCDEF\).

    (3 BE)