Lösungsformel für quadratische Gleichungen (Mitternachtsformel)

  • Das Medikament zeigt die gewünschte Wirkung erst ab einer bestimmten Wirkstoffkonzentration. Daher soll der Patient nach der ersten Tablette des Medikaments eine zweite identisch wirkende Tablette einnehmen, noch bevor die Konzentration des Wirkstoffs im Blut unter 0,75\(\frac{\sf{mg}}{\sf{l}}\) fällt. Nach der Einnahme der zweiten Tablette erhöht sich die Wirkstoffkonzentration um die durch diese Tablette verursachte Konzentration des Wirkstoffs im Blut.

    Ermitteln Sie durch Rechnung den spätesten Zeitpunkt, zu dem die zweite Tablette eingenommen werden soll.

    (4 BE)

  • Ermitteln Sie diejenigen Werte von \(k\), für die die jeweils zugehörige Funktion \(p_{k}\) keine Nullstelle besitzt.

    (3 BE)

  • Die Größen der Sektoren werden geändert. Dabei werden der grüne und der rote Sektor verkleinert, wobei der Mittelpunktswinkel des roten Sektors wieder doppelt so groß wie der des grünen Sektors ist. Die Abbildung zeigt einen Teil eines Baumdiagramms, das für das geänderte Glücksrad die beiden ersten Drehungen beschreibt. Ergänzend ist für einen Pfad die zugehörige Wahrscheinlichkeit angegeben.

    Abbildung Aufgabe 2c Stochastik 2 Mathematik Abitur Bayern 2018

    Bestimmen Sie die Größe des zum grünen Sektor gehörenden Mittelpunktswinkels.

    (5 BE)

  • In einem anderen Becken ändert sich das Volumen des darin enthaltenen Wassers ebenfalls durch Zu- und Abfluss. Die momentane Änderungsrate des Volumens wird für \(0 \leq t \leq 12\) modellhaft durch die in \(\mathbb R\) definierte Funktion \(g \colon t \mapsto 0{,}4 \cdot (2t^{3} - 39t^{2} + 180t)\) beschrieben. Dabei ist \(t\) die seit Beobachtungsbeginn vergangene Zeit in Stunden und \(g(t)\) die momentane Änderungsrate des Volumens in \(\frac{\sf{m^{3}}}{\sf{h}}\).

    Begründen Sie, dass die Funktionswerte von \(g\) für \(0 < t < 7{,}5\) positiv und für \(7{,}5 < t < 12\) negativ sind.

    (4 BE)

  • Die Geschäftsführung will im Mittel für einen Einkauf einen Rabatt von 16 % gewähren. Berechnen Sie für diese Vorgabe den Wert der Wahrscheinlichkeit \(p\).

    (3 BE)

  • Der Graph der in \(\mathbb R\) definierten Funktion \(h\,\colon x \mapsto -\frac{1}{2}x^2 + 2x + 4\) ist die Parabel \(G_h\). Der Graph der in Aufgabe 1e betrachteten Umkehrfunktion \(f^{-1}\) ist ein Teil dieser Parabel.

    Berechnen Sie die Koordinaten der Schnittpunkte von \(G_h\) mit der durch die Gleichung \(y = x\) gegebenen Winkelhalbierenden \(w\) des I. und III. Quadranten.

    (Teilergebnis: x-Koordinaten der Schnittpunkte: -2 und 4)

    (3 BE)

  • Gegeben ist die Funktion \(\displaystyle f \colon x \mapsto \frac{2x + 3}{x^2 + 4x + 3}\) mit maximaler Definitionsmenge \(D\). Bestimmen Sie \(D\) sowie die Nullstelle vom \(f\,\).

    (3 BE)

  • Für welche Füllhöhen \(x\) liegt der Schwerpunkt \(S\) höchstens 5 cm hoch? Beantworten Sie diese Frage zunächst näherungsweise mithilfe von Abbildung 2 und anschließend durch Rechnung.

    (6 BE)

Seite 2 von 2