Geometrie 2

  • Gegeben sind die Punkte \(R\,(8|5|1)\), \(S\,(-4|-1|1)\) und \(T_u\,(u|4|3)\) mit \(u \in \mathbb R\).

    Bestimmen Sie einen Wert von \(u\) so, dass die drei Punkte ein gleichschenkliges Dreieck mit der Basis \([RS]\) bilden.

    (4 BE)

  • Geben Sie eine Gleichung einer Geraden \(j\) an, die parallel zu \(H\) durch den Punkt \(Q\) verläuft.

    (2 BE)

  • Gegeben sind die Ebene \(H\;\colon\, 2x_1 + x_2 - x_3 = 4\) und der Punkt \(Q\,(-3|0|2)\).

    Spiegelt man den Punkt \(Q\) an der Ebene \(H\), so erhält man den Punkt \(Q'\). Ermitteln Sie die Koordinaten von \(Q'\).

    (2 BE)

  • Jede Ebene, die parallel zu \(M\) verläuft, wird durch eine Gleichung der Form \(x_1 - x_2 + x_3 = p\) mit \(p \in \mathbb R\) beschrieben. Nennen Sie die Arten der Figuren, in denen eine solche Ebene den Würfel schneiden kann, und geben Sie die Menge aller Werte von \(p\) an, für die die Schnittfigur ein Sechseck ist.

    (4 BE)

  • Zeichnen Sie die sechs Punkte, in denen \(M\) die Kanten des Würfels schneidet, sowie die sechseckige Schnittfigur in die Abbildung ein.

    (3 BE)

  • Die Ebene \(M\,\colon\; x_1 - x_2 + x_3 = 3\) schneidet den Würfel in einem regulären Sechseck.

    Begründen Sie, dass \(M\) parallel zu \(L\) ist. Geben Sie die Schnittpunkte von \(M\) mit der \(x_1\)-Achse sowie mit der \(x_3\)-Achse an und weisen Sie nach, dass \(M\) den Mittelpunkt der Strecke \([BC]\) enthält.

    (4 BE)

  • Der Würfel wird entlang der Ebene \(L\) geteilt. Berechnen Sie das Volumen der entstehenden Pyramide. Geben Sie an, wie viel Prozent des Würfelvolumens die Pyramide einnimmt. 

    (4 BE)

  • Die Abbildung zeigt einen Würfel der Kantenlänge 6. Die Koordinaten der Eckpunkte \(A\,(0|0|0)\), \(D\,(0|6|0)\) und \(G\,(6|6|6)\) sind gegeben.

    Abbildung zur Aufgabengruppe Geometrie 2, Würfel der Kantenlänge 6

    Die Punkte \(B\), \(E\) und \(G\) liegen in einer Ebene \(L\). Bestimmen Sie eine Gleichung von \(L\) in Normalenform. Zeichnen Sie die Figur, in der die Ebene \(L\) den Würfel schneidet, in die Abbildung ein.

    (mögliches Ergebnis: \(L\,\colon\; x_1 - x_2 + x_3 = 6\))

    (5 BE)

  • Die Vektoren \(\overrightarrow{a} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}\), \(\overrightarrow{b} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}\) und \(\overrightarrow{c_t} = \begin{pmatrix} 4t \\ 2t \\ -5t \end{pmatrix}\) spannen für jeden Wert \(t\) mit \(t \in \mathbb R \,\backslash\,\{0\}\) einen Körper auf. Die Abbildung zeigt den Sachverhalt beispielhaft für einen Wert von \(t\).

    Zeigen Sie, dass die aufgespannten Körper Quader sind.

    Abbildung zu Teilaufgabe 1

     (2 BE)

  • Bestimmen Sie diejenigen Werte von \(t\), für die der jeweils zugehörige Quader das Volumen 15 besitzt.

    (3 BE)

  • Eine Kugel besitzt den Mittelpunkt \(M\,(-3|2|7)\). Der Punkt \(P\,(3|4|4)\) liegt auf der Kugel.

    Der Punkt \(Q\) liegt ebenfalls auf der Kugel, die Strecke \([PQ]\) verläuft durch deren Mittelpunkt. Ermitteln Sie die Koordinaten von \(Q\).

    (3 BE)

  • Weisen Sie nach, dass die Kugel die \(x_1x_2\)-Ebene berührt.

    (2 BE)

  • Die Abbildung zeigt modellhaft ein Einfamilienhaus, das auf einer horizontalen Fläche steht. Auf einer der beiden rechteckigen Dachflächen soll eine Dachgaube errichtet werden. Die Punkte \(A\), \(B\), \(C\), \(D\), \(O\), \(P\), \(Q\) und \(R\) sind die Eckpunkte eines Quaders. Das gerade dreiseitige Prisma \(LMNIJK\) stellt die Dachgaube dar, die Strecke \([GH]\) den First des Dachs, d.h. die obere waagrechte Dachkante. Eine Längeneinheit im Koordinatensystem entspricht 1 m, d.h. das Haus ist 10 m lang.

    Abbildung zu Aufgabengruppe Geometrie 2

    Berechnen Sie den Inhalt derjenigen Dachfläche, die im Modell durch das Rechteck \(BCHG\) dargestellt wird.

    (2 BE)

  • In der Stadt, in der das Einfamilienhaus steht, gilt für die Errichtung von Dachgauben eine Satzung, die jeder Bauherr einhalten muss. Diese Satzung lässt die Errichtung einer Dachgaube zu, wenn die Größe des Neigungswinkels der Dachfläche des jeweiligen Hausdachs gegen die Horizontale mindestens 35° beträgt. Zeigen Sie rechnerisch, dass für das betrachtete Einfamilienhaus die Errichtung einer Dachgaube zulässig ist.

    (3 BE)

  • Die Dachfläche, auf der die Dachgaube errichtet wird, liegt im Modell in der Ebene \(E\,\colon\, 3x_1 + 4x_3 - 44 = 0\).

    Die Dachgaube soll so errichtet werden, dass sie von dem seitlichen Rand der Dachfläche, der im Modell durch die Strecke \([HC]\) dargestellt wird, den Abstand 2 m und vom First des Dachs den Abstand 1 m hat. Zur Ermittlung der Koordinaten des Punkts \(M\) wird die durch den Punkt \(T\,(4|8|8)\) verlaufende Gerade \(\displaystyle t\,\colon\, \overrightarrow{X} = \begin{pmatrix} 4 \\ 8 \\ 8 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix}\), \(\lambda \in \mathbb R\), betrachtet.

    Begründen Sie, dass \(t\) in der Ebene \(E\) verläuft und von der Geraden \(HC\) den Abstand 2 besitzt.

    (5 BE)

  • Auf der Geraden \(t\) wird nun der Punkt \(M\) so festgelegt, dass der Abstand der Dachgaube vom First 1 m beträgt. Bestimmen Sie die Koordinaten von \(M\).

    (3 BE)

  • Die Punkte \(M\) und \(N\) liegen auf der Geraden
    \(\displaystyle \overrightarrow{X} = \begin{pmatrix} 4{,}8 \\ 8 \\ 7{,}4 \end{pmatrix} + \mu \cdot \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}\), \(\mu \in \mathbb R\),
    die im Modell die Neigung der Dachfläche der Gaube festlegt. Die zur \(x_3\)-Achse parallele Strecke \([NL]\) stellt im Modell den sogenannten Gaubenstiel dar; dessen Länge soll 1,4 m betragen. Um die Koordinaten von \(N\) und \(L\) zu bestimmen, wird die Ebene \(F\) betrachtet, die durch Verschiebung von \(E\) um 1,4 in positive \(x_3\)-Richtung entsteht.

    Begründen Sie, dass \(3x_1 + 4x_3 - 49{,}6 = 0\) eine Gleichung von \(F\) ist.

    (3 BE)

  • Bestimmen Sie die Koordinaten von \(N\) und \(L\).

    (Teilergebnis: \(N\,(7{,}2|8|7)\))

    (4 BE)

  • Die Abbildung zeigt die Pyramide \(ABCDS\) mit quadratischer Grundfläche \(ABCD\). Der Pyramide ist eine Stufenpyramide einbeschrieben, die aus Würfeln mit der Kantenlänge 1 besteht.

    Abbildung zu Teilaufgabe 2 Geometrie 2 Prüfungsteil A Mathematik Abitur Bayern 2015

    Geben Sie das Volumen der Stufenpyramide und die Höhe der Pyramide \(ABCDS\) an.

    (2 BE)

  • Bestimmen Sie unter Verwendung eines geeignet gewählten kartesischen Koordinatensystems eine Gleichung für die Gerade, die durch die Punkte \(B\) und \(S\) verläuft.

    Zeichnen Sie das gewählte Koordinatensystem in die Abbildung ein.

    (3 BE)

Seite 1 von 5