Geometrie II

  • Die Ebene \(F\) enthält die Gerade \(CT\) und zerlegt das Prisma in zwei volumengleiche Teilkörper. Wählen Sie einen Punkt \(P\) so, dass er gemeinsam mit den Punkten \(C\) und \(T\) die Ebene \(F\) festlegt; begründen Sie Ihre Wahl. Tragen Sie die Schnittfigur von \(F\) mit dem Prisma in Ihre Zeichnung ein.

    (3 BE)

  • Der Umkreis des Dreiecks \(ABC\) und der Punkt \(S\) legen einen Kegel fest. Zeigen Sie, dass es sich um einen geraden Kegel handelt, der Mittelpunkt des Grundkreises also zugleich der Höhenfußpunkt des Kegels ist. Berechnen Sie, um wie viel Prozent das Volumen des Kegels größer ist als das Volumen der Pyramide \(ABCS\).

    (7 BE)

  • Das Dreieck \(ABC\) aus Aufgabe \(a\) ist die Grundfläche einer dreiseitigen Pyramide \(ABCS\) mit der Spitze \(S(11{,}5|4|-6)\).

     

    Die Grundfläche der Pyramide liegt in einer Ebene \(E\). Ermitteln Sie eine Gleichung von \(E\) in Normalenform.

    (mögliches Ergebnis: \(E\colon \enspace 2x_1 + x_2 -2x_3 - 3 = 0)\)

    (3 BE)

  • Berechnen Sie die Größe des Neigungswinkels der Seitenkante \([BS]\) gegen die Ebene \(E\) sowie das Volumen \(V\) der Pyramide.

    (Teilergebnis: \(V = 216\))

    (7 BE)

  • Alle Punkte \(C^\ast\) im Raum, die zusammen mit \(A\) und \(B\) ein zum Dreieck \(ABC\) kongruentes Dreieck festlegen, bilden zwei gleich große Kreise. Beschreiben Sie (z.B. durch eine Skizze) die Lage der beiden Kreise bezüglich der Strecke \([AB]\) und ermitteln Sie den Radius der beiden Kreise.

    (6 BE)

  • Welche Lagebeziehung muss eine Gerade zur Ebene \(E\) haben, wenn für jeden Punkt \(P\) dieser Geraden die Pyramide \(ABCP\) das gleiche Volumen wie die Pyramide \(ABCS\) besitzen soll? Begründen Sie Ihre Antwort.

    (3 BE)

  • Das Prisma ist das Modell eines Holzkörpers, der auf einer durch die \(x_1x_2\)-Ebene beschriebenen horizontalen Fläche liegt. Der Punkt \(M\,(5|6{,}5|3)\) ist Mittelpunkt einer Kugel, die die Seitenfläche \(BSTC\) im Punkt \(W\) berührt.

    Berechnen Sie den Radius \(r\) der Kugel sowie die Koordinaten von \(W\,\).

    (Teilergebnis: \(r = 1{,}5\))

    (6 BE)

  • In einem kartesischen Koordinatensystem sind die Punkte \(A\,(1|7|3)\), \(B\,(6|-7|1)\) und \(C\,(-2|1|-3)\) gegeben.

    Weisen Sie nach, dass die Punkte \(A\), \(B\) und \(C\) ein rechtwinkliges Dreieck festlegen, dessen Hypothenuse die Strecke \([AB]\) ist und dessen kürzere Kathete die Länge 9 hat.

    (4 BE)

  • In einem kartesischen Koordinatensystem sind die Punkte \(A\,(10|2|0)\), \(B\,(10|8|0)\), \(C\,(10|4|3)\), \(R\,(2|2|0)\), \(S\,(2|8|0)\) und \(T\,(2|4|3)\) gegeben. Der Körper \(ABCRST\) ist ein gerades dreiseitiges Prisma mit der Grungfläche \(ABC\), der Deckfläche \(RST\) und rechteckigen Seitenflächen.

    Zeichen Sie das Prisma in ein kartesisches Koordinatensystem (vgl. Abbildung) ein. Welche besondere Lage im Koordinatensystem hat die Grundfläche \(ABC\,\)? Berechnen Sie das Volumen des Prismas.

    Abbildung: Koordinatensystem

    (6 BE)

  • Die Punkte \(A\), \(B\) und \(T\) legen die Ebene \(H\) fest; diese zerlegt das Prisma ebenfalls in zwei Teilkörper. Beschreiben Sie die Form eines der beiden Teilkörper. Begründen Sie, dass die beiden Teilkörper nicht volumengleich sind.

    (3 BE)

  • Die Kugel rollt nun den Holzkörper hinab. Im Modell bewegt sich der Kugelmittelpunkt vom Punkt \(M\) aus parallel zur Kante \([CB]\) auf einer Geraden \(g\). Geben Sie eine Gleichung von \(g\) an und berechnen Sie im Modell die Länge des Wegs, den der Kugelmittelpunkt zurücklegt, bis die Kugel die \(x_1x_2\)-Ebene berührt.

    (5 BE)

  • Berechnen Sie die Größe des spitzen Winkels, den die Seitenkanten \([CA]\) und \([CB]\) einschließen.

    (3 BE)

  • Ermitteln Sie eine Gleichung der Ebene \(E\), in der die Seitenfläche \(BSTC\) liegt, in Normalenform.

    (mögliches Ergebnis: \(E \colon 3x_2 + 4x_3 - 24 = 0\))

    (4 BE)

  • Die Abbildung zeigt modellhaft einen Austellungspavillon, der die Form einer geraden vierseitigen Pyramide mit quadratischer Grundfläche hat und auf einer horizontalen Fläche steht. Das Dreieck \(BCS\) beschreibt im Modell die südliche Außenwand des Pavillons. Im Koordinatensystem entspricht eine Längeneinheit 1 m, d.h. die Grundfläche des Pavillons hat eine Seitenlänge von 12 m.

    Abbildung: Gerade vierseitige Pyramide ABCDS mit quadratischer Grundfläche ABCD

    Geben Sie die Koordinaten des Punkts \(B\) an und bestimmen Sie das Volumen des Pavillons.

    (3 BE)

  • Die südliche Außenwand des Pavillons liegt im Modell in einer Ebene \(E\). Bestimmen Sie eine Gleichung von \(E\) in Normalenform.

    (mögliches Ergebnis: \(E\;\colon\, 4x_2 + 3x_3 - 48 = 0\)) 

    (4 BE)

  • Der Innenausbau des Pavillons erfordert eine möglichst kurze, dünne Strebe zwischen dem Mittelpunkt der Grundfläche und der südlichen Außenwand. Ermitteln Sie, in welcher Höhe über der Grundfläche die Strebe an der Außenwand befestigt ist.

    (5 BE)

  • An einem Teil der südlichen Außenwand sind Solarmodule flächenbündig montiert. Die Solarmodule bedecken im Modell eine dreieckige Fläche, deren Eckpunkte die Spitze \(S\) sowie die Mittelpunkte der Kanten \([SB]\) und \([SC]\) sind.

    Ermitteln Sie den Inhalt der von den Solarmodulen bedeckten Fläche.

    (4 BE)

  • Die von Solarmodulen abgegebene elektrische Leistung hängt unter anderem von der Größe ihres Neigungswinkels gegen die Horizontale ab. Die Tabelle gibt den Anteil der abgegebenen Leistung an der maximal möglichen Leistung in Abhängigkeit von der Größe des Neigungswinkels an. Schätzen Sie diesen Anteil für die Solarmodule des Pavillons - nach Berechnung des Neigungswinkels - unter Verwendung der Tabelle ab.

    Tabelle: Neigungswinkel / Anteil an der maximalen Leistung

    (4 BE)

  • In einem kartesischen Koordinatensystem sind die Geraden \(\displaystyle g\;\colon\, \vec{X} = \begin{pmatrix} 8 \\ 1 \\ 7 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}\), \(\lambda \in \mathbb R\,\), und \(\displaystyle h\;\colon\, \vec{X} = \begin{pmatrix} -1 \\ 5 \\ -9 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}\), \(\mu \in \mathbb R\,\), gegeben. Die Geraden \(g\) und \(h\) schneiden sich im Punkt \(T\).

    Bestimmen Sie die Koordinaten von \(T\).

    (Ergebnis: \(T\,(2|-1|3)\)) 

    (4 BE)

  • Geben Sie die Koordinaten zweier Punkte \(P\) und \(Q\) an, die auf \(g\) liegen und von \(T\) gleich weit entfernt sind.

    (2 BE)

Seite 1 von 2