Lagebeziehung zwischen Ebenen

  • Die Punkte \(A(0|2|2)\), \(B(2|3|0)\) und \(C(0|-2|4)\) legen die Ebene \(E\) fest.

    a) Ermitteln Sie eine Gleichung der Ebene \(E\) in Normalenform.

    (mögliches Ergebnis: \(E \colon 3x_{1} + 2x_{2} + 4x_{3} = 12\))

    b) Ermitteln Sie die Koordinaten der Schnittpunkte \(S_{1}\), \(S_{2}\) und \(S_{3}\) der Ebene \(E\) mit der \(x_{1}\)-, \(x_{2}\)- bzw. \(x_{3}\)-Achse und veranschaulichen Sie die Lage der Ebene \(E\) in einem kartesischen Koordinatensystem.

    c) Bestimmen Sie eine Gleichung der Schnittgeraden \(s\) der Ebene \(E\) und der \(x_{2}x_{3}\)-Ebene.

    d) Berechnen Sie die Koordinaten des Punktes \(S'\), der durch Spiegelung des Punktes \(S_{1}\) an der Geraden \(s\) hervorgeht.

  • Jede Ebene, die parallel zu \(M\) verläuft, wird durch eine Gleichung der Form \(x_1 - x_2 + x_3 = p\) mit \(p \in \mathbb R\) beschrieben. Nennen Sie die Arten der Figuren, in denen eine solche Ebene den Würfel schneiden kann, und geben Sie die Menge aller Werte von \(p\) an, für die die Schnittfigur ein Sechseck ist.

    (4 BE)

  • Die Ebene \(M\,\colon\; x_1 - x_2 + x_3 = 3\) schneidet den Würfel in einem regulären Sechseck.

    Begründen Sie, dass \(M\) parallel zu \(L\) ist. Geben Sie die Schnittpunkte von \(M\) mit der \(x_1\)-Achse sowie mit der \(x_3\)-Achse an und weisen Sie nach, dass \(M\) den Mittelpunkt der Strecke \([BC]\) enthält.

    (4 BE)