Lineare (Un)Abhängigkeit von zwei Vektoren

  • Aufgabe 1

    Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{8 - 2x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie die maximale Definitionsbemenge \(D_{f}\) sowie die Wertemenge \(W_{f}\) der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist. Bestimmen Sie den Funktionsterm \(f^{-1}(x)\). Geben Sie die Definitions- und die Wertemenge der Umkehrfunktion \(f^{-1}\) an.

    c) Der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{f^{-1}}\) der Umkehrfunktion \(f^{-1}\) schließen im ersten Quadranten mit den Koordinatenachsen ein herzförmiges Flächenstück mit dem Flächeninhalt \(A\) ein.

    Zeichnen Sie \(G_{f}\) sowie \(G_{f^{-1}}\) mithilfe der Funktionswerte \(f(0)\), \(f(2)\), \(f(3{,}5)\) und \(f(4)\) im ersten Quadranten eines gemeinsamen Koordinatensystems. Achten Sie dabei insbesondere auf den Verlauf von \(G_{f}\) an der Stelle \(x = 4\). Schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Berechnen Sie den Flächeninhalt \(A\).

     

    Aufgabe 2

    Geben Sie jeweils eine Gleichung der Gerade \(g\) an, für die gilt:

    a) Die Gerade \(g\) ist eine Ursprungsgerade und der Punkt \(P(1|3|4)\) liegt auf \(g\).

    b) Die Gerade \(g\) verläuft parallel zur \(x_{2}\)-Achse durch den Punkt \(Q(-2|2|0)\).

    c) Die Gerade \(g\) verläuft parallel zur \(x_{1}x_{3}\)-Ebene durch den Punkt \(R(-2{,}5|1|1)\).

    d) Die Gerade \(g\) verläuft durch die Punkte \(S(3|2|-1)\) und \(T(6|4|0)\).

     

    Aufgabe 3

    Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{u}\) und \(h \colon \overrightarrow{X} = \overrightarrow{B} + \mu \cdot \overrightarrow{v}\) mit \(\lambda, \mu \in \mathbb R\). Entscheiden Sie ob die folgenden Aussagen wahr oder falsch sind. Begründen Sie Ihre Entscheidung kurz.

    a) Gilt \(\overrightarrow{u} = k \cdot \overrightarrow{v}; \; k \in \mathbb R\), so verlaufen die Geraden \(g\) und \(h\) parallel zueinander.

    b) Gilt \(\overrightarrow{u} \circ \overrightarrow{v} = 0\), so schneiden sich die Geraden \(g\) und \(h\) rechtwinklig.

     

    Aufgabe 4

    Untersuchen Sie, ob die Punkte \(A(3|1|0)\), \(B(2|-1|-2)\), \(C(-2|1|-2)\) und \(D(4|3|-4)\) in einer Ebene liegen. 

     

    Aufgabe 5

    Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

  • Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{u}\) und \(h \colon \overrightarrow{X} = \overrightarrow{B} + \mu \cdot \overrightarrow{v}\) mit \(\lambda, \mu \in \mathbb R\). Entscheiden Sie ob die folgenden Aussagen wahr oder falsch sind. Begründen Sie Ihre Entscheidung kurz.

    a) Gilt \(\overrightarrow{u} = k \cdot \overrightarrow{v}; \; k \in \mathbb R\), so verlaufen die Geraden \(g\) und \(h\) parallel zueinander.

    b) Gilt \(\overrightarrow{u} \circ \overrightarrow{v} = 0\), so schneiden sich die Geraden \(g\) und \(h\) rechtwinklig.

  • Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

  • Der Polstab wird im Modell durch die Strecke \([MS]\) mit \(S\,(4{,}5|0|4{,}5)\) dargestellt. Zeigen Sie, dass der Polstab senkrecht auf der Grundplatte steht, und berechnen Sie die Länge des Polstabs auf Zentimeter genau.

    (3 BE)

  • Gegeben sind die Ebene \(E \colon 2x_{1} + x_{2} + 2x_{3} = 6\) sowie die Punkte \(P(1|0|2)\) und \(Q(5|2|6)\).

    Zeigen Sie, dass die Gerade durch die Punkte \(P\) und \(Q\) senkrecht zur Ebene \(E\) verläuft.

    (2 BE)

  • Spiegelt man die Punkte \(A\), \(B\) und \(C\) am Symmetriezentrum \(Z(3|3|3)\), so erhält man die Punkte \(A'\), \(B'\) bzw. \(C'\).

    Beschreiben Sie die Lage der Ebene, in der die Punkte \(A\), \(B\) und \(Z\) liegen, im Koordinatensystem. Zeigen Sie, dass die Strecke \([CC']\) senkrecht auf dieser Ebene steht.

    (3 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Die Punkte \(A(1|1|1)\), \(B(0|2|2)\) und \(C(-1|2|0)\) liegen in der Ebene \(E\).

    Bestimmen Sie eine Gleichung von \(E\) in Normalenform.

    (4 BE)

  • Auf einem Spielplatz wird ein dreieckiges Sonnensegel errichtet, um einen Sandkasten zu beschatten. Hierzu werden an drei Ecken des Sandkastens Metallstangen im Boden befestigt, an deren Enden das Sonnensegel fixiert wird.

    In einem kartesischen Koordinatensystem stellt die \(x_{1}x_{2}\)-Ebene den horizontalen Boden dar. Der Sandkasten wird durch das Rechteck mit den Eckpunkten \(K_{1}(0|4|0)\), \(K_{2}(0|0|0)\), \(K_{3}(3|0|0)\) und \(K_{4}(3|4|0)\) beschrieben. Das Sonnensegel wird durch das ebene Dreieck mit den Eckpunkten \(S_{1}(0|6|2{,}5)\), \(S_{2}(0|0|3)\) und \(S_{3}(6|0|2{,}5)\) dargestellt (vgl. Abbildung 1). Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität.

    Abbildung 1 Geometrie 1 Mathematik Abitur Bayern 2018 BAbb. 1

    Die Punkte \(S_{1}\), \(S_{2}\) und \(S_{3}\) legen die Ebene \(E\) fest.

    Ermitteln Sie eine Gleichung der Ebene \(E\) in Normalenform.

    (zur Kontrolle: \(E \colon x_{1} + x_{2} + 12x_{3} - 36 = 0\))

    (4 BE)

  • Die Punkte \(A\), \(B\), \(E\) und \(F\) liegen in der Ebene \(L\). Ermitteln Sie eine Gleichung von \(L\) in Normalenform.

    (zur Kontrolle: \(L \colon 2x_{1} + 2x_{2} + 3x_{3} - 12 = 0\))

    (4 BE)

  • Zeigen Sie, dass die Kletterwand die Form eines Trapezes hat.

    (2 BE)

  • Die Abbildung zeigt den Würfel \(ABCDEFG\) mit \(A(0|0|0)\) und \(G(5|5|5)\) in einem kartesischen Koordinatensystem. Die Ebene \(T\) schneidet die Kanten des Würfels unter anderem in den Punkten \(I(5|0|1)\), \(J(2|5|0)\), \(K(0|5|2)\) und \(L(1|0|5)\).

    Abbildung Geometrie 2 Mathematik Abitur Bayern 2019 B

    Zeichnen Sie das Viereck \(IJKL\) in die Abbildung ein und zeigen Sie, dass es sich um ein Trapez handelt, bei dem zwei gegenüberliegende Seiten gleich lang sind.

    (4 BE)

  • Ermitteln Sie eine Gleichung der Ebene \(T\) in Normalenform.

    (zur Kontrolle: \(T \colon 5x_{1} + 4x_{2} + 5x_{3} - 30 = 0\))

    (3 BE)

Seite 1 von 2