Lot

  • Gegeben sind die Ebene \(H\;\colon\, 2x_1 + x_2 - x_3 = 4\) und der Punkt \(Q\,(-3|0|2)\).

    Spiegelt man den Punkt \(Q\) an der Ebene \(H\), so erhält man den Punkt \(Q'\). Ermitteln Sie die Koordinaten von \(Q'\).

    (2 BE)

  • Im Raum sind die Eckpunkte eines Dreiecks \(ABC\) gegeben, das weder gleichschenklig noch rechtwinklig ist. Beschreiben Sie in mehreren Teilschritten einen Weg zur Ermittlung der Koordinaten eines Punktes \(D\), durch den sich das Dreieck zum Drachenviereck \(ABCD\) ergänzen lässt.

    (4 BE)

  • An den betrachteten geraden Abschnitt der Achterbahn schließt sich - in Fahrtrichtung gesehen - eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene \(E\) verläuft und den Mittelpunkt \(M \left( 0|3\sqrt{2}|2 \right)\) hat.

    Das Lot von \(M\) auf \(g\) schneidet \(g\) im Punkt \(B\). Im Modell stellt \(B\) den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt. Bestimmen Sie die Koordinaten von \(B\) und berechnen Sie den Kurvenradius im Modell.

    (Teilergebnis: \(B\left( -1|2\sqrt{2}|3 \right)\)) 

    (5 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Um die Sonneneinstrahlung im Laufe des Tages möglichst effektiv zur Energiegewinnung nutzen zu können, lässt sich das Metallrohr mit dem Solarmodul um die Längsachse des Rohrs drehen. Die Größe des Neigungswinkels \(\varphi\) gegenüber der Horizontalen bleibt dabei unverändert. Betrachtet wird der Eckpunkt des Solarmoduls, der im Modell durch den Punkt \(A\) dargestellt wird. Berechnen Sie den Radius des Kreises, auf dem sich dieser Eckpunkt des Solarmoduls bei der Drehung des Metallrohrs bewegt, auf Zentimeter genau.

    (4 BE)

  • Der Umkreis des Dreiecks \(ABC\) und der Punkt \(S\) legen einen Kegel fest. Zeigen Sie, dass es sich um einen geraden Kegel handelt, der Mittelpunkt des Grundkreises also zugleich der Höhenfußpunkt des Kegels ist. Berechnen Sie, um wie viel Prozent das Volumen des Kegels größer ist als das Volumen der Pyramide \(ABCS\).

    (7 BE)

  • Das Rechteck \(OABC\) ist das Modell eines steilen Hanggrundstücks; die positive \(x_1\)-Achse beschreibt die südliche, die positive \(x_2\)-Achse die östliche Himmelsrichtung (im Koordinatensystem: 1 LE entspricht 1 m, d.h. die Länge des Grundstücks in West-Ost-Richtung beträgt 60 m.).

    Obwohl das Rechteck \(OABC\) den Flächeninhalt 6000 besitzt, ist das Hanggrundstück auf einer Landkarte des Grundbuchamts mit einer Größe von 4800 m2 verzeichnet. Stellen Sie ausgehend von der Zeichnung aus Aufgabe b eine Vermutung an, welche sinnvolle Regelung das Grundbuchamt damit bei der Festlegung der Grundstücksgröße umsetzt. Bestätigen Sie Ihre Vermutung durch Rechnung.

    (3 BE)