Mathematik Abitur Bayern 2018

  • Auf das Sonnensegel fallen Sonnenstrahlen, die im Modell und in der Abbildung 1 durch parallele Geraden mit dem Richtungsvektor \(\overrightarrow{S_{1}K_{1}}\) dargestellt werden können. Das Sonnensegel erzeugt auf dem Boden einen dreieckigen Schatten. Die Schatten der mit \(S_{2}\) bzw. \(S_{3}\) bezeichneten Ecken des Sonnensegels werden mit \({S_{2}}'\) bzw. \(S_{3}'\) bezeichnet.

    Begründen Sie ohne weitere Rechnung, dass \({S_{2}}'\) auf der \(x_{2}\)-Achse liegt.

    (2 BE)

  • Über ein Kletternetz kann man von einer Plattform zur anderen gelangen. Die vier Eckpunkte des Netzes sind an den beiden Pfählen befestigt. Einer der beiden unteren Eckpunkte befindet sich an Pfahl 1 auf der Höhe der zugehörigen Plattform, der andere untere Eckpunkt an Pfahl 2 oberhalb der Plattform 2. An jedem Pfahl beträgt der Abstand der beiden dort befestigten Eckpunkte des Netzes 1,80 m. das Netz ist so gespannt, dass davon ausgegangen werden kann, dass es die Form eines ebenen Vierecks hat.

    Berechnen Sie den Flächeninhalt des Netzes und erläutern Sie Ihren Ansatz.

    (3 BE)

  • Bestimmen Sie die Größe des Winkels, den die Kletterwand mit dem Untergrund einschließt.

    (3 BE)

  • Ein Unternehmen stellt Kunststoffteile her. Erfahrungsgemäß sind 4 % der hergestellten Teile fehlerhaft. Die Anzahl fehlerhafter Teile unter zufällig ausgewählten kann als binomialverteilt angenommen werden.

    50 Kunststoffteile werden zufällig ausgewählt. Bestimmen Sie für die folgenden Ereignisse jeweils die Wahrscheinlichkeit:

    \(A\):  „Genau zwei der Teile sind fehlerhaft."

    \(B\):  „Mindestens 6 % der Teile sind fehlerhaft."

    (3 BE)

  • Das abgebildete Baumdiagramm stellt ein zweistufiges Zufallsexperiment mit den Ereignissen \(A\) und \(B\) sowie deren Gegenereignissen \(\overline{A}\) und \(\overline{B}\) dar.

    Abbildung Aufgabe 2a Stochastik 1 Mathematik Abitur Bayern 2018 A

    Bestimmen Sie den Wert von \(p\) so, dass das Ereignis \(B\) bei diesem Zufallsexperiment mit der Wahrscheinlichkeit \(0,3\) eintritt.

    (2 BE)

  • Berechnen Sie die Größe des Mittelpunktswinkels desjenigen Sektors, der den Anteil der Befragten veranschaulicht, die männlich waren und angaben, Interesse an Car-Sharing zu haben.

    (1 BE)

  • Anlässlich einer Studie wurden 300 weibliche und 700 männliche Bewohner einer Großstadt im Alter von 18 bis 30 Jahren dazu befragt, ob sie Interesse an Car-Sharing haben. 20 % der Befragten waren weiblich und gaben an, nicht interessiert zu sein. 8 % der Befragten waren männlich und gaben an, Interesse an Car-Sharing zu haben. Das Kreisdiagramm veranschaulicht die absoluten Häufigkeiten, die sich bei der Befragung ergaben.

    Abbildung Aufgabe 1a Stochastik 2 Mathematik Abitur Bayern 2018 A

    Ordnen Sie die Beschriftungen 1 bis 4 den Sektoren A bis D korrekt zu und begründen Sie Ihre Zuordnung.

    (4 BE)

  • Geben Sie die Koordinaten des Schnittpunkts von \(E\) mit der \(x_{2}\)-Achse an.

    (1 BE)

  • Die untere Netzkante berührt die Plattform 2 an der Seite, die durch die Strecke \([RT]\) dargestellt wird. Betrachtet wird der untere Eckpunkt des Netzes, der oberhalb der Plattform 2 befestigt ist. Im Modell hat dieser Eckpunkt die Koordinaten \((5|10|h)\) mit einer reellen Zahl \(h > 3\). Die untere Netzkante liegt auf der Geraden \(g \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 10 \\ h - 2 \end{pmatrix}, \; \lambda \in \mathbb R\,\).

    Berechnen Sie den Abstand des betrachteten Eckpunkts von der Plattform 2.

    (5 BE)

  • Durch Spiegelung von \(G_{f}\) an der Geraden \(x = 4\) entsteht der Graph einer in \(]-\infty;8[\) definierten Funktion \(g\). Dieser Graph wird mit \(G_{g}\) bezeichnet.

    Zeichnen Sie \(G_{g}\) in Abbildung 1 ein.

    (2 BE)

  • Die Kosten, die einem Unternehmen bei der Herstellung einer Flüssigkeit entstehen, können durch die Funktion \(K \colon x \mapsto x^{3} - 12x^{2} + 50x + 20\) mit \(x \in [0;9]\) beschrieben werden. Dabei gibt \(K(x)\) die Kosten in 1000 Euro an, die bei der Produktion von \(x\) Kubikmetern der Flüssigkeit insgesamt entstehen. Abbildung 2 zeigt den Graphen von \(K\).

    Abbildung 2 Aufgab 2 Analysis 2 Mathematik Abitur Bayern 2018 BAbb. 2

    Geben Sie mithilfe von Abbildung 2

    α)  die Produktionsmenge an, bei der die Kosten 125 000 Euro betragen.

    β)  das Monotonieverhalten von \(K\) an und deuten Sie Ihre Angabe im Sachzusammenhang.

    (3 BE)

  • Geben Sie für die Funktionen \(f_{1}\) und \(f_{2}\) jeweils die maximale Definitionsmenge und die Nullstelle an.

    \[f_{1} \colon x \mapsto \frac{2x + 3}{x^{2} - 4}\]

    \[f_{2} \colon x \mapsto \ln{(x + 2)}\]

     

    (4 BE)

  • Für jeden Wert von \(a\) mit \(a \in \mathbb R^{+}\) ist eine Funktion \(f_{a}\) durch \(f_{a}(x) = \dfrac{1}{a} \cdot x^{3} - x\) mit \(x \in \mathbb R\) gegeben.

    Eine der beiden Abbildungen stellt einen Graphen von \(f_{a}\) dar. Geben Sie an, für welche Abbildung dies zutrifft. Begründen Sie Ihre Antwort.

    Abbildung 1 Aufgabe 5a Analysis 1 Mathematik Abitur Bayern 2018 A
    Abbildung 2 Analysis 1 Mathematik Abitur Bayern 2018 A

     

    (2 BE)

  • Die Abbildung zeigt eine nach unten geöffnete Parabel, die zu einer Funktion \(f\) mit Definitionsbereich \(\mathbb R\) gehört. Der Scheitel der Parabel hat die \(x\)-Koordinate 3.

    Betrachtet wird die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{3}^{x}f(t) dt\).

    Wie viele Nullstellen hat \(F\)?. Machen Sie Ihre Antwort ohne Rechnung plausibel.

    Abbildung Aufgabe 3 Analysis 2 Mathematik Abitur Bayern 2018 A

     

    (4 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

    (1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

    (2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

    (3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

    (5 BE)

  • Die Punkte \(A(1|1|1)\), \(B(0|2|2)\) und \(C(-1|2|0)\) liegen in der Ebene \(E\).

    Bestimmen Sie eine Gleichung von \(E\) in Normalenform.

    (4 BE)

  • Liegt in einer Stichprobe von 50 Geschwindigkeitsmessungen die Zahl der Tempoverstöße um mehr als eine Standardabweichung unter dem Erwartungswert, geht die Polizei davon aus, dass wirksam vor der Geschwindigkeitskontrolle gewarnt wurde, und bricht die Kontrolle ab. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Geschwindigkeitskontrolle fortgeführt wird, obwohl die Wahrscheinlichkeit dafür, dass ein Tempoverstoß begangen wird, auf 10 % gesunken ist.

    (5 BE)

  • Die beschriebene Spiegelung von \(G_{f}\) an der Geraden \(x = 4\) kann durch eine Spiegelung von \(G_{f}\) an der \(y\)-Achse mit anschließender Verschiebung ersetzt werden. Beschreiben Sie diese Verschiebung und geben Sie \(a, b \in \mathbb R\) an, sodass \(g(x) = f(ax + b)\) für \(x \in \; ]-\infty;8[\) gilt.

    (3 BE)

  • Die Funktion \(E\) mit \(E(x) = 23x\) gibt für \(0 \leq x \leq 9\) den Erlös (in 1000 Euro) an, den das Unternehmen beim Verkauf von \(x\) Kubikmetern der Flüssigkeit erzielt. Für die sogenannte Gewinnfunktion \(G\) gilt \(G(x) = E(x) - K(x)\). Positive Werte von \(G\) werden als Gewinn bezeichnet, negative als Verlust.

    Zeigen Sie, dass das Unternehmen keinen Gewinn erzielt, wenn vier Kubikmeter der Flüssigkeit verkauft werden.

    (2 BE)

  • Der Hersteller des Sonnensegels empfiehlt, die verwendeten Metallstangen bei einer Sonnensegelfläche von mehr als 20 m² durch zusätzliche Sicherungsseile zu stabilisieren. Beurteilen Sie, ob eine solche Sicherung aufgrund dieser Empfehlung in der vorliegenden Situation nötig ist

    (3 BE)

Seite 1 von 4